Improve Thermal Efficiency With Enhanced Integrated Motor Technology
Design News, February 17, 2014Providing maximum cooling within a compact space has always been a challenging task. Over the last decade, a number of highly efficient solutions have been developed based on the principles of advanced integrated design. Employing each cooler internal component (blower, motor, heat sink, etc.) for more than one function results in a more compact and efficient design while increasing the unit’s cooling capacity.
Several years ago, linear drives were developed that could propel different objects along a thin PCB track. This was done using stator-rotor elements similar to the PCB motors used previously for integrated cooling solutions. This task proved challenging, because the linear drive uses only a few stator coils and a few magnets for propulsion, compared to 30-40 pairs of coils-magnets for a radial motor. The inefficiency of the drive required a higher electrical current, which substantially heated the coils. During initial testing, the track’s temperature rose so high that the permanent magnets on the moving objects were demagnetized.