Smart Wires Technology & Grid Modernization

smart-wires-grid

You Asked – They Answered: Q&A with Smart Wires

Scientific American, February 13, 2015

I have received many interesting questions from readers in response to last Sunday’s article “Controlling the Path of Least Resistance with Smart Wires.” This week, I consolidated these questions and took them back to Smart Wires – the start-up company behind the power flow control technology that was featured in the previous discussion – to get their response. Their answers are below.

But first, to quickly re-cap – According to reports released over the past 6 months, the Tennessee Valley Authority (TVA) and Southern Company have successfully deployed networks of distributed power flow control devices to relieve stress on the nation’s electricity grid. These reports document findings from two on-going large-scale projects that could represent an economic option for solving a national grid modernization challenge.

The core technologies used in these projects were developed by Smart Wires, an aptly named start-up company based in Oakland, California. This company was one of the first technology start-ups funded by ARPA-E under their Green Electricity Network Integration (GENI) Program.

Question 1 – Do you need to put this power flow control technology on every power line in the transmission grid? Or is a portion (1/3) enough to have *almost* complete control?

Every system is unique with different constraints and requirements. While it depends heavily on the electrical network, it will often be the case that some key transmission lines will benefit more from Smart Wires technology and have more impact on the remaining lines in the network than other lines in the system. Deploying Smart Wires on a single line can often have disproportionate impact on the entire grid. For example, we’ve seen cases where deploying on a single line can allow sufficient power transfer to avoid building a new power plant. It usually makes sense to deploy on the lines with the highest impact on grid resiliency (or to solve a particular problem) and then proceed with additional lines until the benefits do not justify the costs.

Read More